SDK Documentation
Examples
Examples
Real-world examples and implementation patterns for MeshAI Protocol
Overview
This section provides practical examples of how to integrate MeshAI Protocol into real-world applications across different industries and use cases.
Content Creation
Automated content generation and optimization workflows
Document Processing
Intelligent document analysis and data extraction pipelines
Customer Support
Multi-language AI-powered customer service systems
Content Creation Platform
A complete content creation workflow using multiple specialized AI agents.
Use Case
A marketing platform that generates blog posts, social media content, and marketing copy using specialized AI agents for different content types.
from meshai import MeshAI
import asyncio
class ContentCreationPlatform:
def __init__(self, api_key):
self.client = MeshAI(api_key=api_key)
async def create_blog_post(self, topic, target_audience, word_count=1000):
"""Create a complete blog post with title, content, and SEO metadata"""
# Create workflow
workflow = self.client.create_workflow(name="blog_creation")
# Research phase
research_task = workflow.add_task(
task_type="content_research",
input_data={
"topic": topic,
"depth": "comprehensive",
"sources": ["academic", "industry", "news"]
}
)
# Generate outline
outline_task = workflow.add_task(
task_type="content_outline",
input_data={
"topic": topic,
"research": research_task.output,
"target_audience": target_audience,
"word_count": word_count
},
depends_on=research_task
)
# Generate title options
title_task = workflow.add_task(
task_type="title_generation",
input_data={
"topic": topic,
"outline": outline_task.output,
"count": 5,
"style": "engaging"
},
depends_on=outline_task
)
# Write main content
content_task = workflow.add_task(
task_type="long_form_writing",
input_data={
"outline": outline_task.output,
"style": "professional",
"tone": "informative",
"target_audience": target_audience
},
depends_on=outline_task,
parallel_to=title_task
)
# Generate SEO metadata
seo_task = workflow.add_task(
task_type="seo_optimization",
input_data={
"content": content_task.output,
"title": title_task.output,
"target_keywords": [topic]
},
depends_on=[content_task, title_task]
)
# Execute workflow
results = await workflow.execute()
return {
"title": results['title_task'].output[0], # Best title
"content": results['content_task'].output,
"meta_description": results['seo_task'].output['meta_description'],
"keywords": results['seo_task'].output['keywords'],
"research_sources": results['research_task'].output['sources'],
"total_cost": workflow.get_total_cost(),
"quality_score": workflow.get_average_quality()
}
async def create_social_media_campaign(self, blog_post, platforms):
"""Create social media posts from blog content"""
campaign_posts = {}
for platform in platforms:
result = await self.client.execute_task(
task_type="social_media_adaptation",
input_data={
"content": blog_post["content"],
"platform": platform,
"style": "engaging",
"include_hashtags": True,
"max_length": self.get_platform_limit(platform)
}
)
campaign_posts[platform] = result.output
return campaign_posts
def get_platform_limit(self, platform):
limits = {
"twitter": 280,
"linkedin": 3000,
"facebook": 2000,
"instagram": 1000
}
return limits.get(platform, 1000)
# Usage example
async def main():
platform = ContentCreationPlatform("your_api_key")
# Create blog post
blog_post = await platform.create_blog_post(
topic="The Future of Artificial Intelligence",
target_audience="tech professionals",
word_count=1500
)
print(f"Generated blog post: {blog_post['title']}")
print(f"Cost: {blog_post['total_cost']} SOL")
# Create social media campaign
social_posts = await platform.create_social_media_campaign(
blog_post,
platforms=["twitter", "linkedin", "facebook"]
)
for platform, post in social_posts.items():
print(f"{platform.title()}: {post[:100]}...")
if __name__ == "__main__":
asyncio.run(main())
from meshai import MeshAI
import asyncio
class ContentCreationPlatform:
def __init__(self, api_key):
self.client = MeshAI(api_key=api_key)
async def create_blog_post(self, topic, target_audience, word_count=1000):
"""Create a complete blog post with title, content, and SEO metadata"""
# Create workflow
workflow = self.client.create_workflow(name="blog_creation")
# Research phase
research_task = workflow.add_task(
task_type="content_research",
input_data={
"topic": topic,
"depth": "comprehensive",
"sources": ["academic", "industry", "news"]
}
)
# Generate outline
outline_task = workflow.add_task(
task_type="content_outline",
input_data={
"topic": topic,
"research": research_task.output,
"target_audience": target_audience,
"word_count": word_count
},
depends_on=research_task
)
# Generate title options
title_task = workflow.add_task(
task_type="title_generation",
input_data={
"topic": topic,
"outline": outline_task.output,
"count": 5,
"style": "engaging"
},
depends_on=outline_task
)
# Write main content
content_task = workflow.add_task(
task_type="long_form_writing",
input_data={
"outline": outline_task.output,
"style": "professional",
"tone": "informative",
"target_audience": target_audience
},
depends_on=outline_task,
parallel_to=title_task
)
# Generate SEO metadata
seo_task = workflow.add_task(
task_type="seo_optimization",
input_data={
"content": content_task.output,
"title": title_task.output,
"target_keywords": [topic]
},
depends_on=[content_task, title_task]
)
# Execute workflow
results = await workflow.execute()
return {
"title": results['title_task'].output[0], # Best title
"content": results['content_task'].output,
"meta_description": results['seo_task'].output['meta_description'],
"keywords": results['seo_task'].output['keywords'],
"research_sources": results['research_task'].output['sources'],
"total_cost": workflow.get_total_cost(),
"quality_score": workflow.get_average_quality()
}
async def create_social_media_campaign(self, blog_post, platforms):
"""Create social media posts from blog content"""
campaign_posts = {}
for platform in platforms:
result = await self.client.execute_task(
task_type="social_media_adaptation",
input_data={
"content": blog_post["content"],
"platform": platform,
"style": "engaging",
"include_hashtags": True,
"max_length": self.get_platform_limit(platform)
}
)
campaign_posts[platform] = result.output
return campaign_posts
def get_platform_limit(self, platform):
limits = {
"twitter": 280,
"linkedin": 3000,
"facebook": 2000,
"instagram": 1000
}
return limits.get(platform, 1000)
# Usage example
async def main():
platform = ContentCreationPlatform("your_api_key")
# Create blog post
blog_post = await platform.create_blog_post(
topic="The Future of Artificial Intelligence",
target_audience="tech professionals",
word_count=1500
)
print(f"Generated blog post: {blog_post['title']}")
print(f"Cost: {blog_post['total_cost']} SOL")
# Create social media campaign
social_posts = await platform.create_social_media_campaign(
blog_post,
platforms=["twitter", "linkedin", "facebook"]
)
for platform, post in social_posts.items():
print(f"{platform.title()}: {post[:100]}...")
if __name__ == "__main__":
asyncio.run(main())
import { MeshAI } from 'meshai-sdk';
class ContentCreationPlatform {
constructor(apiKey) {
this.client = new MeshAI({ apiKey });
}
async createBlogPost(topic, targetAudience, wordCount = 1000) {
// Create workflow
const workflow = this.client.createWorkflow({ name: 'blog_creation' });
// Research phase
const researchTask = workflow.addTask({
taskType: 'content_research',
input: {
topic,
depth: 'comprehensive',
sources: ['academic', 'industry', 'news']
}
});
// Generate outline
const outlineTask = workflow.addTask({
taskType: 'content_outline',
input: {
topic,
research: researchTask.output,
targetAudience,
wordCount
},
dependsOn: researchTask
});
// Generate title options
const titleTask = workflow.addTask({
taskType: 'title_generation',
input: {
topic,
outline: outlineTask.output,
count: 5,
style: 'engaging'
},
dependsOn: outlineTask
});
// Write main content
const contentTask = workflow.addTask({
taskType: 'long_form_writing',
input: {
outline: outlineTask.output,
style: 'professional',
tone: 'informative',
targetAudience
},
dependsOn: outlineTask,
parallelTo: titleTask
});
// Generate SEO metadata
const seoTask = workflow.addTask({
taskType: 'seo_optimization',
input: {
content: contentTask.output,
title: titleTask.output,
targetKeywords: [topic]
},
dependsOn: [contentTask, titleTask]
});
// Execute workflow
const results = await workflow.execute();
return {
title: results.titleTask.output[0],
content: results.contentTask.output,
metaDescription: results.seoTask.output.metaDescription,
keywords: results.seoTask.output.keywords,
researchSources: results.researchTask.output.sources,
totalCost: workflow.getTotalCost(),
qualityScore: workflow.getAverageQuality()
};
}
async createSocialMediaCampaign(blogPost, platforms) {
const campaignPosts = {};
for (const platform of platforms) {
const result = await this.client.executeTask({
taskType: 'social_media_adaptation',
input: {
content: blogPost.content,
platform,
style: 'engaging',
includeHashtags: true,
maxLength: this.getPlatformLimit(platform)
}
});
campaignPosts[platform] = result.output;
}
return campaignPosts;
}
getPlatformLimit(platform) {
const limits = {
twitter: 280,
linkedin: 3000,
facebook: 2000,
instagram: 1000
};
return limits[platform] || 1000;
}
}
// Usage example
async function main() {
const platform = new ContentCreationPlatform('your_api_key');
// Create blog post
const blogPost = await platform.createBlogPost(
'The Future of Artificial Intelligence',
'tech professionals',
1500
);
console.log(`Generated blog post: ${blogPost.title}`);
console.log(`Cost: ${blogPost.totalCost} SOL`);
// Create social media campaign
const socialPosts = await platform.createSocialMediaCampaign(
blogPost,
['twitter', 'linkedin', 'facebook']
);
Object.entries(socialPosts).forEach(([platform, post]) => {
console.log(`${platform}: ${post.substring(0, 100)}...`);
});
}
main().catch(console.error);
Results
{
"title": "The Future of AI: How Machine Learning Will Transform Industries by 2030",
"content": "Artificial Intelligence is rapidly evolving...",
"metaDescription": "Explore how AI and machine learning will reshape industries by 2030. Learn about emerging trends, challenges, and opportunities in this comprehensive guide.",
"keywords": ["artificial intelligence", "machine learning", "AI trends", "future technology"],
"totalCost": 0.025,
"qualityScore": 0.94
}
Document Processing Pipeline
Intelligent document analysis for legal and business use cases.
Use Case
A legal firm processing contracts and documents using OCR, entity extraction, and legal analysis.
from meshai import MeshAI
import asyncio
class LegalDocumentProcessor:
def __init__(self, api_key):
self.client = MeshAI(api_key=api_key)
async def process_contract(self, document_url, contract_type):
"""Complete contract analysis workflow"""
workflow = self.client.create_workflow(name="contract_analysis")
# OCR for scanned documents
ocr_task = workflow.add_task(
task_type="document_ocr",
input_data={
"document_url": document_url,
"quality": "high",
"language": "auto-detect"
},
quality_threshold=0.99
)
# Extract key entities
entity_task = workflow.add_task(
task_type="legal_entity_extraction",
input_data={
"text": ocr_task.output,
"contract_type": contract_type,
"extract_types": [
"parties", "dates", "amounts",
"obligations", "terms", "clauses"
]
},
depends_on=ocr_task
)
# Analyze contract clauses
clause_analysis_task = workflow.add_task(
task_type="contract_clause_analysis",
input_data={
"text": ocr_task.output,
"contract_type": contract_type,
"focus_areas": [
"termination_clauses", "liability",
"intellectual_property", "confidentiality"
]
},
depends_on=ocr_task,
parallel_to=entity_task
)
# Risk assessment
risk_task = workflow.add_task(
task_type="legal_risk_assessment",
input_data={
"contract_text": ocr_task.output,
"entities": entity_task.output,
"clause_analysis": clause_analysis_task.output,
"contract_type": contract_type
},
depends_on=[ocr_task, entity_task, clause_analysis_task]
)
# Generate executive summary
summary_task = workflow.add_task(
task_type="legal_summary_generation",
input_data={
"contract_text": ocr_task.output,
"risk_assessment": risk_task.output,
"key_entities": entity_task.output,
"summary_type": "executive"
},
depends_on=[risk_task, entity_task]
)
# Execute workflow
results = await workflow.execute()
return {
"extracted_text": results['ocr_task'].output,
}
from meshai import MeshAI
import asyncio
class LegalDocumentProcessor:
def __init__(self, api_key):
self.client = MeshAI(api_key=api_key)
async def process_contract(self, document_url, contract_type):
"""Complete contract analysis workflow"""
workflow = self.client.create_workflow(name="contract_analysis")
# OCR for scanned documents
ocr_task = workflow.add_task(
task_type="document_ocr",
input_data={
"document_url": document_url,
"quality": "high",
"language": "auto-detect"
},
quality_threshold=0.99
)
# Extract key entities
entity_task = workflow.add_task(
task_type="legal_entity_extraction",
input_data={
"text": ocr_task.output,
"contract_type": contract_type,
"extract_types": [
"parties", "dates", "amounts",
"obligations", "terms", "clauses"
]
},
depends_on=ocr_task
)
# Analyze contract clauses
clause_analysis_task = workflow.add_task(
task_type="contract_clause_analysis",
input_data={
"text": ocr_task.output,
"contract_type": contract_type,
"focus_areas": [
"termination_clauses", "liability",
"intellectual_property", "confidentiality"
]
},
depends_on=ocr_task,
parallel_to=entity_task
)
# Risk assessment
risk_task = workflow.add_task(
task_type="legal_risk_assessment",
input_data={
"contract_text": ocr_task.output,
"entities": entity_task.output,
"clause_analysis": clause_analysis_task.output,
"contract_type": contract_type
},
depends_on=[ocr_task, entity_task, clause_analysis_task]
)
# Generate executive summary
summary_task = workflow.add_task(
task_type="legal_summary_generation",
input_data={
"contract_text": ocr_task.output,
"risk_assessment": risk_task.output,
"key_entities": entity_task.output,
"summary_type": "executive"
},
depends_on=[risk_task, entity_task]
)
# Execute workflow
results = await workflow.execute()
return {
"extracted_text": results['ocr_task'].output,
}